TY - JOUR
T1 - Role of the Mycobacterium marinum ESX-1 secretion system in sliding motility and biofilm formation
AU - Lai, Li Yin
AU - Lin, Tzu Lung
AU - Chen, Yi Yin
AU - Hsieh, Pei Fang
AU - Wang, Jin Town
N1 - Publisher Copyright:
© 2018 Lai, Lin, Chen, Hsieh and Wang.
PY - 2018/5/30
Y1 - 2018/5/30
N2 - Mycobacterium marinum is a close relative of Mycobacterium tuberculosis that can cause systemic tuberculosis-like infections in ectotherms and skin infections in humans. Sliding motility correlates with biofilm formation and virulence in most bacteria. In this study, we used a sliding motility assay to screen 2,304 transposon mutants of M. marinum NTUH-M6885 and identified five transposon mutants with decreased sliding motility. Transposons that interrupted the type VII secretion system (T7SS) ESX-1-related genes, espE (mmar_5439), espF (mmar_5440), and eccA1 (mmar_5443), were present in 3 mutants. We performed reverse-transcription polymerase chain reaction to verify genes from mmar_5438 to mmar_5450, which were found to belong to a single transcriptional unit. Deletion mutants of espE, espF, espG (mmar_5441), and espH (mmar_5442) displayed significant attenuation regarding sliding motility and biofilm formation. M. marinum NTUH-M6885 possesses a functional ESX-1 secretion system. However, deletion of espG or espH resulted in slightly decreased secretion of EsxB (which is also known as CFP-10). Thus, the M. marinum ESX-1 secretion system mediates sliding motility and is crucial for biofilm formation. These data provide new insight into M. marinum biofilm formation.
AB - Mycobacterium marinum is a close relative of Mycobacterium tuberculosis that can cause systemic tuberculosis-like infections in ectotherms and skin infections in humans. Sliding motility correlates with biofilm formation and virulence in most bacteria. In this study, we used a sliding motility assay to screen 2,304 transposon mutants of M. marinum NTUH-M6885 and identified five transposon mutants with decreased sliding motility. Transposons that interrupted the type VII secretion system (T7SS) ESX-1-related genes, espE (mmar_5439), espF (mmar_5440), and eccA1 (mmar_5443), were present in 3 mutants. We performed reverse-transcription polymerase chain reaction to verify genes from mmar_5438 to mmar_5450, which were found to belong to a single transcriptional unit. Deletion mutants of espE, espF, espG (mmar_5441), and espH (mmar_5442) displayed significant attenuation regarding sliding motility and biofilm formation. M. marinum NTUH-M6885 possesses a functional ESX-1 secretion system. However, deletion of espG or espH resulted in slightly decreased secretion of EsxB (which is also known as CFP-10). Thus, the M. marinum ESX-1 secretion system mediates sliding motility and is crucial for biofilm formation. These data provide new insight into M. marinum biofilm formation.
KW - Biofilm formation
KW - ESX-1
KW - Mycobacterium marinum
KW - Sliding motility
KW - Type VII secretion system
UR - http://www.scopus.com/inward/record.url?scp=85047800473&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2018.01160
DO - 10.3389/fmicb.2018.01160
M3 - 文章
AN - SCOPUS:85047800473
SN - 1664-302X
VL - 9
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
IS - MAY
M1 - 1160
ER -