Sensing hiv protease and its inhibitor using “helical epitope”—imprinted polymers

Chien Yu Chou, Chung Yin Lin*, Cheng Hsin Wu, Dar Fu Tai*

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

21 引文 斯高帕斯(Scopus)

摘要

A helical epitope-peptide (lle85-Gly94) was selected from the α-helix structure of the HIV protease (PR) as the template, which represents an intricate interplay between structure conformation and dimerization. The peptide template was mixed with water, trifluoroethanol (TFE), and acetonitrile (ACN) at a certain ratio to enlarge the helical conformation in the solution for the fabrication of helical epitope-mediated molecularly imprinted polymers (HEMIPs) on a quartz crystal microbalance (QCM) chip. The template molecules were then removed under equilibrium batch rebinding conditions involving 5% acetic acid/water. The resulting HEMIPs chip exhibited a high affinity toward template peptide HIV PR85–94, His-tagged HIV PR, and HIV PR, with dissociation constants (Kd) as 160, 43.3, and 78.5 pM, respectively. The detection limit of the developed HIV PR85–94 QCM sensor is 0.1 ng/mL. The HEMIPs chip exhibited a high affinity and selectivity to bind HIV PR and subsequently to an inhibitor of HIV PR (nelfinavir). The HIV PR binding site was properly oriented on the HEMIPs-chip to develop a HIV PR/HEMIPs chip, which can effectively bind nelfinavir to establish a sandwich assay. The nelfinavir then attached to the HIV PR/HEMIPs chip, which can be easily removed involving 0.8% acetic acid/water. Therefore, HIV PR/HEMIPs chip can be useful to screen for other HIV PR inhibitors. This technique may improve drug targeting for HIV therapy and also strengthen investigations into other virus assays.

原文英語
文章編號3592
頁(從 - 到)1-10
頁數10
期刊Sensors
20
發行號12
DOIs
出版狀態已出版 - 06 2020

文獻附註

Publisher Copyright:
© 2020 by the authors.

指紋

深入研究「Sensing hiv protease and its inhibitor using “helical epitope”—imprinted polymers」主題。共同形成了獨特的指紋。

引用此