TY - CHAP
T1 - Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis in the Era of Systems Medicine
AU - Chen, Chun Bing
AU - Wang, Chuang Wei
AU - Chung, Wen Hung
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022
Y1 - 2022
N2 - Stevens–Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are severe mucocutaneous bullous disorders characterized by widespread skin and mucosal necrosis and detachment, which are most commonly triggered by medications. Despite their rarity, these severe cutaneous adverse drug reactions will result in high mortality and morbidity as well as long-term sequela. The immunopathologic mechanisms is mainly cell-mediated cytotoxic reaction against keratinocytes leading to massive skin necrolysis. Subsequent studies have demonstrated that immune synapse composed of cytotoxic T cells with drug-specific human leukocyte antigen (HLA) class I restriction and T cell receptors (TCR) repertoire is the key pathogenic for SJS/TEN. Various cytotoxic proteins and cytokines such as soluble granulysin, perforin, granzyme B, interleukin-15, Fas ligand, interferon-γ, tumor necrosis factor-α have been as mediators involved in the pathogenesis of SJS/TEN. Early recognition and immediate withdrawal of causative agents, and critical multidisciplinary supportive care are key management of SJS/TEN. To date, there is yet to be a sufficient consensus or recommendation for the immunomodulants of the treatment in SJS/TEN. Systemic corticosteroids remain one of the most common treatment options for SJS/TEN, though the efficacy remain uncertain. Currently, there is increasing evidence showing that cyclosporine and TNF-α inhibitors decrease the mortality of SJS/TEN. Further multicenter double-blinded, randomized, placebo-controlled trials are required to confirm the efficacy and safety.
AB - Stevens–Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are severe mucocutaneous bullous disorders characterized by widespread skin and mucosal necrosis and detachment, which are most commonly triggered by medications. Despite their rarity, these severe cutaneous adverse drug reactions will result in high mortality and morbidity as well as long-term sequela. The immunopathologic mechanisms is mainly cell-mediated cytotoxic reaction against keratinocytes leading to massive skin necrolysis. Subsequent studies have demonstrated that immune synapse composed of cytotoxic T cells with drug-specific human leukocyte antigen (HLA) class I restriction and T cell receptors (TCR) repertoire is the key pathogenic for SJS/TEN. Various cytotoxic proteins and cytokines such as soluble granulysin, perforin, granzyme B, interleukin-15, Fas ligand, interferon-γ, tumor necrosis factor-α have been as mediators involved in the pathogenesis of SJS/TEN. Early recognition and immediate withdrawal of causative agents, and critical multidisciplinary supportive care are key management of SJS/TEN. To date, there is yet to be a sufficient consensus or recommendation for the immunomodulants of the treatment in SJS/TEN. Systemic corticosteroids remain one of the most common treatment options for SJS/TEN, though the efficacy remain uncertain. Currently, there is increasing evidence showing that cyclosporine and TNF-α inhibitors decrease the mortality of SJS/TEN. Further multicenter double-blinded, randomized, placebo-controlled trials are required to confirm the efficacy and safety.
KW - Cytotoxic T lymphocyte
KW - Granulysin
KW - Human leukocyte antigen
KW - Severe cutaneous adverse reaction
KW - Stevens–Johnson syndrome
KW - T cell receptors
KW - Toxic epidermal necrolysis
UR - http://www.scopus.com/inward/record.url?scp=85128551781&partnerID=8YFLogxK
U2 - 10.1007/978-1-0716-2265-0_3
DO - 10.1007/978-1-0716-2265-0_3
M3 - 章节
C2 - 35437717
AN - SCOPUS:85128551781
T3 - Methods in Molecular Biology
SP - 37
EP - 54
BT - Methods in Molecular Biology
PB - Humana Press Inc.
ER -