摘要
Background: Acute lung injury (ALI) is a severe life-threatening inflammatory disease. Neutrophil activation is a major pathogenic factor in ALI. Protein kinase B (PKB)/AKT regulates diverse cellular responses, but the significance in neutrophilic inflammation and ALI remains unknown. Methods: Human neutrophils and neutrophil-like differentiated HL-60 (dHL-60) cells were used to examine the anti-inflammatory effects of 5,7-dimethoxy-1,4-phenanthrenequinone (CLLV-1). The therapeutic potential of CLLV-1 was determined in a mouse model of lipopolysaccharide (LPS)-induced ALI. Findings: CLLV-1 inhibited respiratory burst, degranulation, adhesion, and chemotaxis in human neutrophils and dHL-60 cells. CLLV-1 inhibited the phosphorylation of AKT (Thr308 and Ser473), but not of ERK, JNK, or p38. Furthermore, CLLV-1 blocked AKT activity and covalently reacted with AKT Cys310 in vitro. The AKT 309–313 peptide-CLLV-1 adducts were determined by NMR or mass spectrometry assay. The alkylation agent-conjugated AKT (reduced form) level was also inhibited by CLLV-1. Significantly, CLLV-1 ameliorated LPS-induced ALI, neutrophil infiltration, and AKT activation in mice. Interpretation: Our results identify CLLV-1 as a covalent allosteric AKT inhibitor by targeting AKT Cys310. CLLV-1 shows potent anti-inflammatory activity in human neutrophils and LPS-induced mouse ALI. Our findings provide a mechanistic framework for redox modification of AKT that may serve as a novel pharmacological target to alleviate neutrophilic inflammation.
原文 | 英語 |
---|---|
頁(從 - 到) | 528-540 |
頁數 | 13 |
期刊 | EBioMedicine |
卷 | 40 |
DOIs | |
出版狀態 | 已出版 - 02 2019 |
文獻附註
Publisher Copyright:© 2019 The Authors