TY - JOUR
T1 - Targeting Ca2+-dependent pathways to promote corneal epithelial wound healing induced by CISD2 deficiency
AU - Sun, Chi Chin
AU - Lee, Shao Yun
AU - Chen, Li Hsien
AU - Lai, Chia Hui
AU - Shen, Zhao Qing
AU - Chen, Nan Ni
AU - Lai, Yi Shyun
AU - Tung, Chien Yi
AU - Tzeng, Tsai Yu
AU - Chiu, Wen Tai
AU - Tsai, Ting Fen
N1 - Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
PY - 2023/9
Y1 - 2023/9
N2 - Chronic epithelial defects of the cornea, which are usually associated with severe dry eye disease, diabetes mellitus, chemical injuries or neurotrophic keratitis, as well as aging, are an unmet clinical need. CDGSH Iron Sulfur Domain 2 (CISD2) is the causative gene for Wolfram syndrome 2 (WFS2; MIM 604928). CISD2 protein is significantly decreased in the corneal epithelium of patients with various corneal epithelial diseases. Here we summarize the most updated publications and discuss the central role of CISD2 in corneal repair, as well as providing new results describing how targeting Ca2+-dependent pathways can improve corneal epithelial regeneration. This review mainly focuses on the following topics. Firstly, an overview of the cornea and of corneal epithelial wound healing. The key players involved in this process, such as Ca2+, various growth factors/cytokines, extracellular matrix remodeling, focal adhesions and proteinases, are briefly discussed. Secondly, it is well known that CISD2 plays an essential role in corneal epithelial regeneration via the maintenance of intracellular Ca2+ homeostasis. CISD2 deficiency dysregulates cytosolic Ca2+, impairs cell proliferation and migration, decreases mitochondrial function and increases oxidative stress. As a consequence, these abnormalities bring about poor epithelial wound healing and this, in turn, will lead to persistent corneal regeneration and limbal progenitor cell exhaustion. Thirdly, CISD2 deficiency induces three distinct Ca2+-dependent pathways, namely the calcineurin, CaMKII and PKCα signaling pathways. Intriguingly, inhibition of each of the Ca2+-dependent pathways seems to reverse cytosolic Ca2+ dysregulation and restore cell migration during corneal wound healing. Notably, cyclosporin, an inhibitor of calcineurin, appears to have a dual effect on both inflammatory and corneal epithelial cells. Finally, corneal transcriptomic analyses have revealed that there are six major functional groupings of differential expression genes when CISD2 deficiency is present: (1) inflammation and cell death; (2) cell proliferation, migration and differentiation; (3) cell adhesion, junction and interaction; (4) Ca2+ homeostasis; (5) wound healing and extracellular matrix; and (6) oxidative stress and aging. This review highlights the importance of CISD2 in corneal epithelial regeneration and identifies the potential of repurposing venerable FDA-approved drugs that target Ca2+-dependent pathways for new uses, namely treating chronic epithelial defects of the cornea.
AB - Chronic epithelial defects of the cornea, which are usually associated with severe dry eye disease, diabetes mellitus, chemical injuries or neurotrophic keratitis, as well as aging, are an unmet clinical need. CDGSH Iron Sulfur Domain 2 (CISD2) is the causative gene for Wolfram syndrome 2 (WFS2; MIM 604928). CISD2 protein is significantly decreased in the corneal epithelium of patients with various corneal epithelial diseases. Here we summarize the most updated publications and discuss the central role of CISD2 in corneal repair, as well as providing new results describing how targeting Ca2+-dependent pathways can improve corneal epithelial regeneration. This review mainly focuses on the following topics. Firstly, an overview of the cornea and of corneal epithelial wound healing. The key players involved in this process, such as Ca2+, various growth factors/cytokines, extracellular matrix remodeling, focal adhesions and proteinases, are briefly discussed. Secondly, it is well known that CISD2 plays an essential role in corneal epithelial regeneration via the maintenance of intracellular Ca2+ homeostasis. CISD2 deficiency dysregulates cytosolic Ca2+, impairs cell proliferation and migration, decreases mitochondrial function and increases oxidative stress. As a consequence, these abnormalities bring about poor epithelial wound healing and this, in turn, will lead to persistent corneal regeneration and limbal progenitor cell exhaustion. Thirdly, CISD2 deficiency induces three distinct Ca2+-dependent pathways, namely the calcineurin, CaMKII and PKCα signaling pathways. Intriguingly, inhibition of each of the Ca2+-dependent pathways seems to reverse cytosolic Ca2+ dysregulation and restore cell migration during corneal wound healing. Notably, cyclosporin, an inhibitor of calcineurin, appears to have a dual effect on both inflammatory and corneal epithelial cells. Finally, corneal transcriptomic analyses have revealed that there are six major functional groupings of differential expression genes when CISD2 deficiency is present: (1) inflammation and cell death; (2) cell proliferation, migration and differentiation; (3) cell adhesion, junction and interaction; (4) Ca2+ homeostasis; (5) wound healing and extracellular matrix; and (6) oxidative stress and aging. This review highlights the importance of CISD2 in corneal epithelial regeneration and identifies the potential of repurposing venerable FDA-approved drugs that target Ca2+-dependent pathways for new uses, namely treating chronic epithelial defects of the cornea.
KW - CISD2
KW - Calcium homeostasis
KW - Corneal wound healing
KW - Cyclosporine A
KW - Limbal stem cell deficiency
KW - Cornea/metabolism
KW - Signal Transduction
KW - Humans
KW - Calcineurin/metabolism
KW - Epithelium, Corneal/metabolism
KW - Wound Healing
UR - http://www.scopus.com/inward/record.url?scp=85163735132&partnerID=8YFLogxK
U2 - 10.1016/j.cellsig.2023.110755
DO - 10.1016/j.cellsig.2023.110755
M3 - 文章
C2 - 37315750
AN - SCOPUS:85163735132
SN - 0898-6568
VL - 109
SP - 110755
JO - Cellular Signalling
JF - Cellular Signalling
M1 - 110755
ER -