TY - JOUR
T1 - The suppression effect of dendritic cells maturation by adipose-derived stem cells through TGF-β1 related pathway
AU - Wang, Yu Chi
AU - Chen, Rong Fu
AU - Brandacher, Gerald
AU - Lee, W. P.Andrew
AU - Kuo, Yur Ren
N1 - Publisher Copyright:
© 2018 Elsevier Inc.
PY - 2018/9/15
Y1 - 2018/9/15
N2 - Background: Our previous studies demonstrated that adipose-derived stem cells (ASCs) could modulate regulatory T cells (Treg) and prolong hind-limb allotransplant survival in vitro and in vivo. Dendritic cells (DCs) play a pivotal role in innate and adaptive immunity. The aim of this study is to investigate the underlying mechanism of ASCs in modulating DC maturation. Materials and Methods: ASCs were isolated from rodent adipose tissue, DCs were derived from the bone marrow, and CD4+ T cells were purified from splenocytes. DCs were co-cultured with ASCs to evaluate the suppressive effects of ASCs. CD4+ T-cells were co-cultured with DCs pre-treated with or without ASCs. The cell surface markers of DCs were analyzed by flow cytometry. T-cell proliferation was analyzed by the BrdU proliferation test. Tolerogenic cytokines and indoleamine 2,3-dioxygenase (IDO) expressions after different treatments were detected by quantitative real-time PCR, Western blotting, and ELISA analysis. Result: ASCs suppressed DC maturation as evidenced by low expressions of CD80, CD86, and MHC-II. Also, ASC-treated mature DCs showed higher levels of TGF-β1, IL-10, and IDO expressions, as compared to that in matured DCs (mDCs) alone. ASC-treated mDCs co-cultured with CD4+ T cells revealed a significant higher percentage of Treg than mDC without treatment. The IDO level in ASC-treated mDCs and Treg induction effects were blocked by the ASCs pre-treated with TGF-β1 siRNAs, but not IL-10 siRNAs. Conclusion: ASC-modulated DC maturation correlated with TGF-β1 secretion, IDO expression, and Treg induction. ASCs could be used as a potential immunomodulatory strategy for clinical application in allotransplantation.
AB - Background: Our previous studies demonstrated that adipose-derived stem cells (ASCs) could modulate regulatory T cells (Treg) and prolong hind-limb allotransplant survival in vitro and in vivo. Dendritic cells (DCs) play a pivotal role in innate and adaptive immunity. The aim of this study is to investigate the underlying mechanism of ASCs in modulating DC maturation. Materials and Methods: ASCs were isolated from rodent adipose tissue, DCs were derived from the bone marrow, and CD4+ T cells were purified from splenocytes. DCs were co-cultured with ASCs to evaluate the suppressive effects of ASCs. CD4+ T-cells were co-cultured with DCs pre-treated with or without ASCs. The cell surface markers of DCs were analyzed by flow cytometry. T-cell proliferation was analyzed by the BrdU proliferation test. Tolerogenic cytokines and indoleamine 2,3-dioxygenase (IDO) expressions after different treatments were detected by quantitative real-time PCR, Western blotting, and ELISA analysis. Result: ASCs suppressed DC maturation as evidenced by low expressions of CD80, CD86, and MHC-II. Also, ASC-treated mature DCs showed higher levels of TGF-β1, IL-10, and IDO expressions, as compared to that in matured DCs (mDCs) alone. ASC-treated mDCs co-cultured with CD4+ T cells revealed a significant higher percentage of Treg than mDC without treatment. The IDO level in ASC-treated mDCs and Treg induction effects were blocked by the ASCs pre-treated with TGF-β1 siRNAs, but not IL-10 siRNAs. Conclusion: ASC-modulated DC maturation correlated with TGF-β1 secretion, IDO expression, and Treg induction. ASCs could be used as a potential immunomodulatory strategy for clinical application in allotransplantation.
KW - Adipose-derived stem cells
KW - Dendritic cells
KW - Indoleamine 2,3-dioxygenase
KW - Transforming growth factor β1
UR - http://www.scopus.com/inward/record.url?scp=85050980805&partnerID=8YFLogxK
U2 - 10.1016/j.yexcr.2018.07.037
DO - 10.1016/j.yexcr.2018.07.037
M3 - 文章
C2 - 30053444
AN - SCOPUS:85050980805
SN - 0014-4827
VL - 370
SP - 708
EP - 717
JO - Experimental Cell Research
JF - Experimental Cell Research
IS - 2
ER -