摘要
Diabetic Retinopathy (DR) is a type of retinopathy resulted from diabetic hyperglycemia (high blood glucose), which causes the abnormal blood vessels of eyes to bleed and causes the patients to lose sight. In this paper, we employ two deep neural networks, InceptionV3 and EfficientNet, to classify the retinal fundus images of DR patients into five severity levels of DR, and improve the accuracy of the neural networks by techniques such as dropout, data preprocessing, data augmentation, and learning rate adjustment. The experimental results showed that EfficientNetB0 has the best performance with an accuracy of 86.26% and a quadratic weighted kappa of 0.926.
原文 | 英語 |
---|---|
主出版物標題 | Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022 |
發行者 | Institute of Electrical and Electronics Engineers Inc. |
頁面 | 241-242 |
頁數 | 2 |
ISBN(電子) | 9781665470506 |
DOIs | |
出版狀態 | 已出版 - 2022 |
對外發佈 | 是 |
事件 | 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022 - Taipei, 台灣 持續時間: 06 07 2022 → 08 07 2022 |
出版系列
名字 | Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022 |
---|
Conference
Conference | 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022 |
---|---|
國家/地區 | 台灣 |
城市 | Taipei |
期間 | 06/07/22 → 08/07/22 |
文獻附註
Publisher Copyright:© 2022 IEEE.