Using Deep Neural Networks to Classify the Severity of Diabetic Retinopathy

Chun Ying Chen, Meng Chou Chang

研究成果: 圖書/報告稿件的類型會議稿件同行評審

5 引文 斯高帕斯(Scopus)

摘要

Diabetic Retinopathy (DR) is a type of retinopathy resulted from diabetic hyperglycemia (high blood glucose), which causes the abnormal blood vessels of eyes to bleed and causes the patients to lose sight. In this paper, we employ two deep neural networks, InceptionV3 and EfficientNet, to classify the retinal fundus images of DR patients into five severity levels of DR, and improve the accuracy of the neural networks by techniques such as dropout, data preprocessing, data augmentation, and learning rate adjustment. The experimental results showed that EfficientNetB0 has the best performance with an accuracy of 86.26% and a quadratic weighted kappa of 0.926.

原文英語
主出版物標題Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022
發行者Institute of Electrical and Electronics Engineers Inc.
頁面241-242
頁數2
ISBN(電子)9781665470506
DOIs
出版狀態已出版 - 2022
對外發佈
事件2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022 - Taipei, 台灣
持續時間: 06 07 202208 07 2022

出版系列

名字Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022

Conference

Conference2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022
國家/地區台灣
城市Taipei
期間06/07/2208/07/22

文獻附註

Publisher Copyright:
© 2022 IEEE.

指紋

深入研究「Using Deep Neural Networks to Classify the Severity of Diabetic Retinopathy」主題。共同形成了獨特的指紋。

引用此